Structural Calculations

for

NEW SINGLE-FAMILY DWELLING Plummer Residence

9212 SE 33rd Pl Mercer Island, WA 98040 1ST PLAN CHECK RESPONSE

prepared by:
O.G. Engineering, PLLC
8645 22nd Ave SW
Seattle, WA, 98106
(206) 290-4608

Job No. 21006 Date: 7/27/22

Search Information

Address: 9212 SE 33rd Pl, Mercer Island, WA 98040, USA

Coordinates: 47.5818239, -122.2135532

Elevation: 46 ft

Timestamp: 2022-03-31T19:26:09.229Z

Hazard Type: Seismic

Reference Document: ASCE7-16

Risk Category: II
Site Class: D

Basic Parameters

Name	Value	Description
S _S	1.392	MCE _R ground motion (period=0.2s)
S ₁	0.485	MCE _R ground motion (period=1.0s)
S _{MS}	1.392	Site-modified spectral acceleration value
S _{M1}	* null	Site-modified spectral acceleration value
S _{DS}	0.928	Numeric seismic design value at 0.2s SA
S _{D1}	* null	Numeric seismic design value at 1.0s SA

SEISMIC DESIGN ORIGINALLY SUBMITTED FOR PERMIT BASED ON Sds = 1.11 (CONSERVATIVE --> OK BY INSPECTION --> NO SEISMIC DESIGN CHANGES REQUIRED)

▼Additional Information

Name	Value	Description
SDC	* null	Seismic design category
Fa	1	Site amplification factor at 0.2s
F _v	* null	Site amplification factor at 1.0s
CR _S	0.903	Coefficient of risk (0.2s)
CR ₁	0.897	Coefficient of risk (1.0s)
PGA	0.596	MCE _G peak ground acceleration
F _{PGA}	1.1	Site amplification factor at PGA
PGA _M	0.655	Site modified peak ground acceleration
TL	6	Long-period transition period (s)
SsRT	1.392	Probabilistic risk-targeted ground motion (0.2s)
SsUH	1.542	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
SsD	3.419	Factored deterministic acceleration value (0.2s)
S1RT	0.485	Probabilistic risk-targeted ground motion (1.0s)
S1UH	0.54	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
S1D	1.386	Factored deterministic acceleration value (1.0s)
PGAd	1.175	Factored deterministic acceleration value (PGA)

^{*} See Section 11.4.8

PAVEL PATTO GWARO RAFE (REF 459)

M=200 x 36"=7-2 xin

V2F #188 1/2×1/2× (8 stauran)

Mr = 2Fy = 6301 in3 x4 bks; = 8.3 km oh

USE (4) 12" 8 x 5" ENDES EPOKY ANDWES EN14. 5 = 5 CHSE Q

Company:	Date:	7/27/2022
Engineer:	Page:	1/5
Project:		
Address:		
Phone:		
E-mail:		_

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-14 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor Material: F1554 Grade 36 Diameter (inch): 0.375

Effective Embedment depth, hef (inch): 6.000

Code report: ICC-ES ESR-4057

Anchor category: -Anchor ductility: Yes h_{min} (inch): 7.25 c_{ac} (inch): 11.31 C_{min} (inch): 1.75 S_{min} (inch): 1.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No Ignore concrete breakout in tension: No Ignore concrete breakout in shear: No Hole condition: Dry concrete

Inspection: Continuous

Temperature range, Short/Long: 150/110°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 5.00 x 5.00 x 0.25

Recommended Anchor

Anchor Name: SET-3G - SET-3G w/ 3/8"Ø F1554 Gr. 36

Code Report: ICC-ES ESR-4057

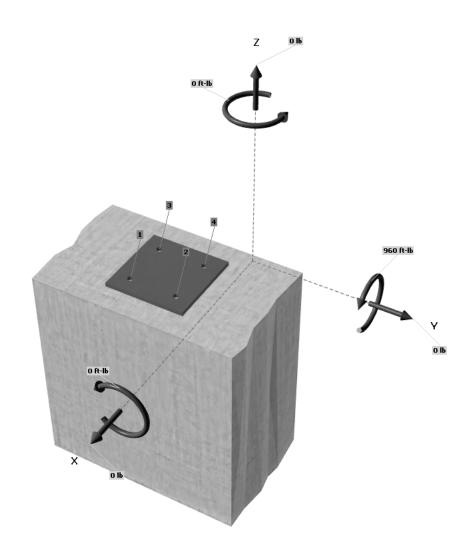
Company:	Date:	7/27/2022
Engineer:	Page:	2/5
Project:		
Address:		
Phone:		
E-mail:		

Load and Geometry Load factor source: ACI 318 Section 5.3

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No

Anchors only resisting wind and/or seismic loads: No


Strength level loads:

Nua [lb]: 0

V_{uax} [lb]: 0 V_{uay} [lb]: 0

M_{ux} [ft-lb]: 0 M_{uy} [ft-lb]: 960 Muz [ft-lb]: 0

<Figure 1>

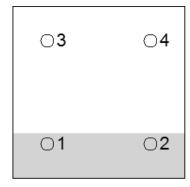
Company:	Date:	7/27/2022
Engineer:	Page:	3/5
Project:		
Address:		
Phone:		
E-mail:		

<Figure 2>

Company:	Date:	7/27/2022
Engineer:	Page:	4/5
Project:		
Address:		
Phone:		
E-mail:		

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	0.0	0.0	0.0	0.0
2	0.0	0.0	0.0	0.0
3	1615.7	0.0	0.0	0.0
4	1615.7	0.0	0.0	0.0
Sum	3231.5	0.0	0.0	0.0


Maximum concrete compression strain (%): 0.23 Maximum concrete compression stress (psi): 989

Resultant tension force (lb): 3231

Resultant compression force (lb): 3232

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00

<	rıg	Jui	е	3>

4. Steel Strength of Anchor in Tension (Sec. 17.4.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
4525	0.75	3394

5. Concrete Breakout Strength of Anchor in Tension (Sec. 17.4.2)

 $N_b = k_c \lambda_a \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. 17.4.2.2a)

k c	λ_a	f'c (psi)	h _{ef} (in)	N _b	(lb)				
17.0	1.00	2500	6.000	124	192				
$\phi N_{cbg} = \phi (A$	$A_{Nc}/A_{Nco}) arPsi_{ec,N} arPsi_{ec,N$	$\Psi_{ed,N} \Psi_{c,N} \Psi_{cp,N} N$	lь (Sec. 17.3.1 а	& Eq. 17.4.2	.1b)				
A_{Nc} (in ²)	A_{Nco} (in ²)	Ca,min (in)	$arPsi_{ec,N}$	$arPsi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
168 00	324 00	2.50	1 000	በ 783	1 00	1 000	12492	0.65	3208

6. Adhesive Strength of Anchor in Tension (Sec. 17.4.5)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat} (f'_c / 2,500)^n$

$\tau_{k,cr}$ (psi)	f short-term	Ksat	f'c (psi)	n		Tk,cr (psi)			
1448	1.00	1.00	2500	0.24		1448			
$N_{ba} = \lambda_a \tau_{cr} \pi_0$	d _a h _{ef} (Eq. 17.4.5	5.2)							
λa	$ au_{cr}$ (psi)	d _a (in)	h_{ef} (in)	N _{ba} (lb))				
1.00	1448	0.38	6.000	10235		•			
$\phi N_{ag} = \phi (A_{Na})$	a / A _{Na0}) $\Psi_{\text{ec,Na}}\Psi_{\text{e}}$	$_{ m ed,Na} arPsi_{ m cp,Na} {\sf N}_{ m ba}$ (Sec. 17.3.1 & F	Eq. 17.4.5.1b)					
A_{Na} (in ²)	A_{Na0} (in ²)	c _{Na} (in)	c _{a,min} (in)	$\Psi_{ec,Na}$	$arPsi_{\sf ed,Na}$	$arPsi_{cp,Na}$	$N_{ba}(lb)$	ϕ	ϕN_{ag} (lb)
111.68	120.53	5.49	2.50	1.000	0.837	1.000	10235	0.65	5157

Company:	Date:	7/27/2022
Engineer:	Page:	5/5
Project:		
Address:		
Phone:		
E-mail:		•

11. Results

11. Interaction of Tensile and Shear Forces (Sec. D.7)?

Tension	Factored Load, N _{ua} (Ib)	Design Strength, øNn (lb)	Ratio	Status
Steel	1616	3394	0.48	Pass
Concrete breakout	3231	3298	0.98	Pass (Governs)
Adhesive	3231	5157	0.63	Pass

SET-3G w/ 3/8"Ø F1554 Gr. 36 with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Cantilevered Retaining Wall

LIC#: KW-06018000, Build:20.22.7.14

O.G. ENGINEERING, PLLC

(c) ENERCALC INC 1983-2022

Project File: 21006_Plummer.ec6

DESCRIPTION: F10 - Paver Patio Retaining Wall

Code Reference:

Calculations per IBC 2018 1807.3, CBC 2019, ASCE 7-16

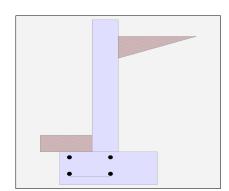
Criteria

Retained Height	=	3.50 ft
Wall height above soil	=	0.50 ft
Slope Behind Wall	=	0.00
Height of Soil over Toe	=	6.00 in
Water height over heel	=	0.0 ft

Surcharge Loads

Surcharge Over Heel = 0.0 psf Used To Resist Sliding & Overturning Surcharge Over Toe = 0.0 Used for Sliding & Overturning

Axial Load Applied to Stem


=	0.0 lbs
=	0.0 lbs
=	0.0 in
	=

Soil Data

Allow Soil Bearing Equivalent Fluid Pressure	= Meth	3,325.0 psf
Active Heel Pressure	=	35.0 psf/ft
	=	
Passive Pressure	=	300.0 psf/ft
Soil Density, Heel	=	130.00 pcf
Soil Density, Toe	=	130.00 pcf
Footing Soil Friction	=	0.400
Soil height to ignore		
for passive pressure	=	12.00 in

Lateral Load Applied to Stem

Lateral Load Height to Top Height to Bottom	= = =	28.0 #/ft 3.50 ft 0.00 ft
Load Type	=	Seismic (E) (Service Level)
Wind on Exposed Stem (Service Level)) =	0.0 psf

Adjacent Footing Load

Adjacent Footing Load	=	0.0 lbs
Footing Width	=	0.00 ft
Eccentricity	=	0.00 in
Wall to Ftg CL Dist	=	0.00 ft
Footing Type		Spread Footing
Base Above/Below Soil at Back of Wall	=	0.0 ft
Poisson's Ratio	=	0.300

Cantilevered Retaining Wall LIC#: KW-06018000, Build:20.22.7.14

Project File: 21006_Plummer.ec6 (c) ENERCALC INC 1983-2022

O.G. ENGINEERING, PLLC

DESCRIPTION: F10 - Paver Patio Retaining Wall

Design Summary			Stem Construction	_	Bottom			
			Design Height Above Ftg	 ft =	Stem OK 0.00			
Wall Stability Ratios			Wall Material Above "Ht"	=				
Overturning	=	2.33 OK	Design Method	_	SD	SD	SD	
Sliding	=	1.55 OK	Thickness	_	8.00	OD	OD	
Global Stability	=	3.05	Rebar Size	=	# 5			
			Rebar Spacing	=	12.00			
Total Bearing Load	=	1,285 lbs	Rebar Placed at	=	5.69 i			
resultant ecc.	=	5.03 in	Design Data		0.070			
Eccentricity outsi	de mid	dle third	fb/FB + fa/Fa	=	0.076			
Soil Pressure @ Toe	=	1,032 psf OK	Total Force @ Section					
Soil Pressure @ Heel	=	0 psf OK	Service Level	lbs=				
Allowable	=	3,325 psf	Strength Level	lbs=	441.0			
Soil Pressure Less			MomentActual					
ACI Factored @ Toe ACI Factored @ Heel	=	1,444 psf	Service Level	ft-# =				
- · · · · · · · -	=	0 psf	Strength Level	ft-# =	571.7			
Footing Shear @ Toe	=	1.3 psi OK	MomentAllowable	=	7,512.3			
Footing Shear @ Heel	=	3.7 psi OK	ShearActual					
Allowable	=	82.2 psi	Service Level	psi=				
Cliding Color			Strength Level	psi =	6.5			
Sliding Calcs		450.4.11	ShearAllowable	psi =	82.2			
Lateral Sliding Force	=	452.4 lbs	Anet (Masonry)	•	02.2			
less 100% Passive Force		187.5 lbs 514.2 lbs	` ,	in2 =	400.0			
less 100% Friction Force			Wall Weight	psf =	100.0			
Added Force Req'd	=	0.0 lbs OK	Rebar Depth 'd'	in =	5.69			
for 1.5 Stability	=	0.0 lbs OK	Masonry Data					
Vertical component of active	latora	l coil proceuro IS	f'm					
NOT considered in the calcu			Fs	psi=				
TVOT CONSIdered III the calcu	Jiation	or son bearing	Solid Grouting	psi = =				
Load Factors			Modular Ratio 'n'	=				
Building Code			Equiv. Solid Thick.	=				
Dead Load		1.200	Masonry Block Type	=				
Live Load		1.600	Masonry Design Method		ASD			
Earth, H		1.600	Concrete Data		700			
Wind, W		1.000	f'c	psi=	3,000.0			
Seismic, E		1.000	Fy	psi =	60,000.0			
			•	•	•			

Cantilevered Retaining Wall

LIC#: KW-06018000, Build:20.22.7.14 O.G. ENGINEERING, PLLC (c) ENERCALC INC 1983-2022

Project File: 21006_Plummer.ec6

DESCRIPTION: F10 - Paver Patio Retaining Wall

Concrete Stem Rebar Area Details

Bottom Stem Vertical Reinforcing **Horizontal Reinforcing**

As (based on applied moment): 0.0237 in2/ft

Min Stem T&S Reinf Area 0.768 in2 (4/3) * As: 0.0315 in2/ft

200bd/fy: 200(12)(5.69)/60000: 0.2276 in2/ft Min Stem T&S Reinf Area per ft of stem Height: 0.192 in2/ft

0.0018bh: 0.0018(12)(8): 0.1728 in2/ft Horizontal Reinforcing Options: Two layers of : One layer of: #4@ 12.50 in #4@ 25.00 in 0.1728 in2/ft

Required Area: Provided Area: 0.31 in2/ft #5@ 19.38 in #5@ 38.75 in #6@ 55.00 in Maximum Area: 0.925 in2/ft #6@ 27.50 in

Footing Data

Cover @ Top

Toe Wid		=	0.83 ft
Heel Wi		=	1.67
Total Fo		=	2.50
	Thickness	=	12.00 in
Key Wid		=	0.00 in
Key De		=	0.00 in
Key Dis		=	0.00 ft
f'c =	3,000 psi		60,000 psi
Footing	Concrete Densit		150.00 pcf
Min. As	%		0.0018

2.00

@ Btm.= 3.00 in

Footing Design Results

		<u>Toe</u>	<u>Heel</u>	
Factored Pressure	=	1,444	0 psf	
Mu' : Upward	=	442	95 ft-#	
Mu' : Downward	=	89	365 ft-#	
Mu: Design	=	353 OK	270 ft-#	OK
phiMn	=	27,464	2,739 ft-#	
Actual 1-Way Shear	=	1.34	3.68 psi	
Allow 1-Way Shear	=	82.16	43.82 psi	
Toe Reinforcing	=	#8@12.00 in		
Heel Reinforcing	=	None Spec'd		
Key Reinforcing	=	None Spec'd		
Footing Torsion, Tu		=	0.00 ft-lbs	
Footing Allow. Torsio	n, p	ohi Tu =	0.00 ft-lbs	

If torsion exceeds allowable, provide supplemental design for footing torsion.

Other Acceptable Sizes & Spacings

Toe: #4@ 9.25 in, #5@ 14.35 in, #6@ 20.37 in, #7@ 27.77 in, #8@ 36.57 in, #9@ 46.29 in, #10@ 58.79 in

Heel: phiMn = phi'5'lambda'sqrt(fc)'Sm

Key: No key defined

Min footing T&S reinf Area 0.65 in2 in2 /ft Min footing T&S reinf Area per foot 0.26

If one layer of horizontal bars: If two layers of horizontal bars:

#4@ 9.26 in #4@ 18.52 in #5@ 14.35 in #5@ 28.70 in #6@ 20.37 in #6@ 40.74 in

Cantilevered Retaining Wall

LIC#: KW-06018000, Build:20.22.7.14

O.G. ENGINEERING, PLLC

(c) ENERCALC INC 1983-2022

Project File: 21006_Plummer.ec6

DESCRIPTION: F10 - Paver Patio Retaining Wall

Summary of Overturning & Resisting Forces & Moments

		ERTURNING.			RE	SISTING	
Item	Force lbs	Distance ft	Moment ft-#		Force lbs	Distance ft	Moment ft-#
HL Act Pres (ab water tbl)	354.4	1.50	531.6	Soil Over HL (ab. water tbl)	456.5	2.00	912.3
HL Act Pres (be water tbl) Hydrostatic Force				Soil Over HL (bel. water tbl) Watre Table		2.00	912.3
Buoyant Force =				Sloped Soil Over Heel =			
Surcharge over Heel =				Surcharge Over Heel =			
Surcharge Over Toe =				Adjacent Footing Load =			
Adjacent Footing Load =				Axial Dead Load on Stem =			
Added Lateral Load =	98.0	2.75	269.5	* Axial Live Load on Stem =			
Load @ Stem Above Soil =				Soil Over Toe =	54.0	0.42	22.4
=				Surcharge Over Toe =			
				Stem Weight(s) =	400.0	1.16	465.3
				Earth @ Stem Transitions=			
Total =	452.4	O.T.M. =	801.1	Footing Weight =	375.0	1.25	468.8
				Key Weight =			
Resisting/Overturning Ra	tio	= 1	2.33	Vert. Component =			
Vertical Loads used for So	il Pressure	= 1,285.5	lbs	Total = * Axial live load NOT included in		bs R.M.=	1,868.7

 ^{*} Axial live load NOT included in total displayed, or used for overturning resistance, but is included for soil pressure calculation.

Vertical component of active lateral soil pressure IS NOT considered in the calculation of Sliding Resistance.

Vertical component of active lateral soil pressure IS NOT considered in the calculation of Overturning Resistance.

Tilt

Horizontal Deflection at Top of Wall due to settlement of soil

(Deflection due to wall bending not considered)

Soil Spring Reaction Modulus 100.0 pci Horizontal Defl @ Top of Wall (approximate only) 0.115 in

The above calculation is not valid if the heel soil bearing pressure exceeds that of the toe,

because the wall would then tend to rotate into the retained soil.

13 of 15

Cantilevered Retaining Wall

O.G. ENGINEERING, PLLC

(c) ENERCALC INC 1983-2022

Project File: 21006_Plummer.ec6

DESCRIPTION: F10 - Paver Patio Retaining Wall

Rebar Lap & Embedment Lengths Information

Stem Design Segment: Bottom

LIC#: KW-06018000, Build:20.22.7.14

Stem Design Height: 0.00 ft above top of footing

Lap Splice length for #5 bar specified in this stem design segment = 21.36 in

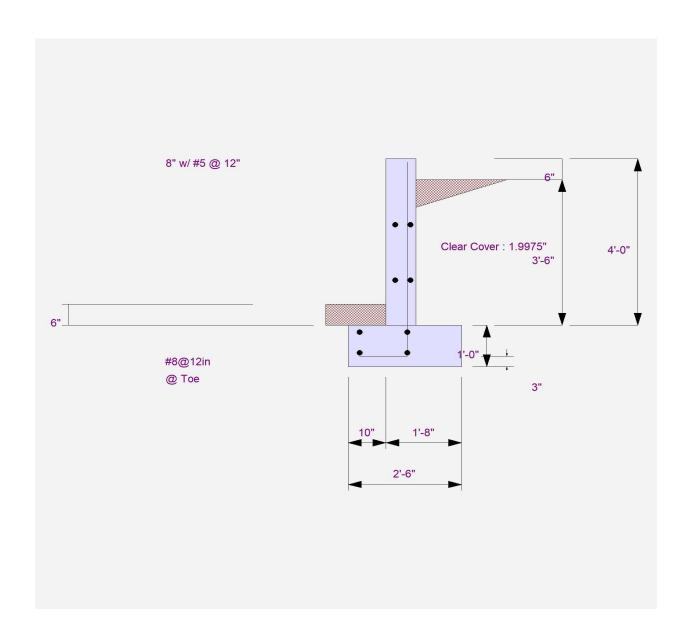
Development length for #5 bar specified in this stem design segment = 16.43 in

Hooked embedment length into footing for #5 bar specified in this stem design segment = 6.00 in

As Provided = 0.3100 in2/ft

As Required = 0.1728 in2/ft

Cantilevered Retaining Wall


Project File: 21006_Plummer.ec6

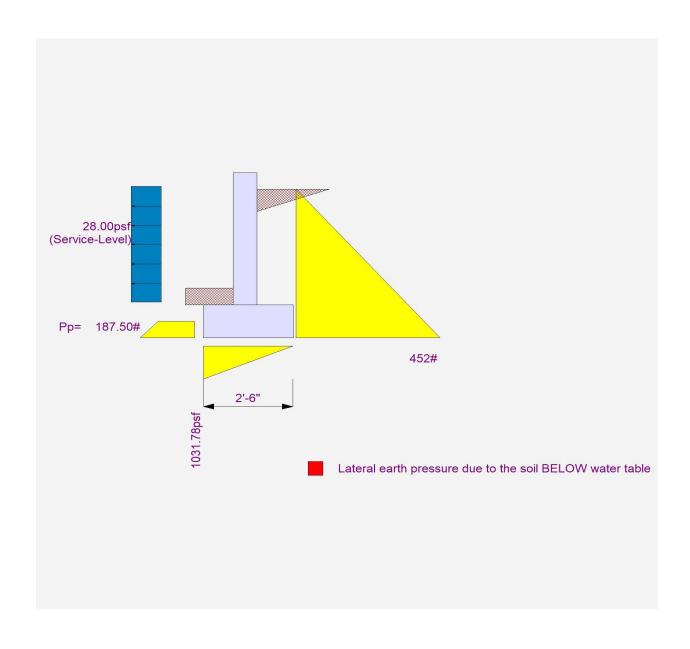
LIC#: KW-06018000, Build:20.22.7.14

O.G. ENGINEERING, PLLC

(c) ENERCALC INC 1983-2022

DESCRIPTION: F10 - Paver Patio Retaining Wall

Cantilevered Retaining Wall


Project File: 21006_Plummer.ec6

LIC#: KW-06018000, Build:20.22.7.14

O.G. ENGINEERING, PLLC

(c) ENERCALC INC 1983-2022

DESCRIPTION: F10 - Paver Patio Retaining Wall

